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ABSTRACT 

It is known that  the largest disc that  a compact hyperbolic surface of 

genus g may contain has radius R ---- c o s h - l ( 1 / 2  s i n ( l r / ( 1 2 g -  6))). It is 

also known that  the number  of such (extremal) surfaces, al though finite, 

grows exponentially with g. Elsewhere the authors  have shown that  for 

genus g > 3 extremal surfaces contain only one extremal disc. 

Here we describe in full detail the situation in genus 2. Following 

results that  go back to Fricke and Klein we first show that  there are 

exactly nine different extremal surfaces. Then  we proceed to locate the 

various extremal discs that  each of these surfaces possesses as well as 

their set of Weierstrass points and group of isometries. 

1. I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

1.1 EXTREMAL DISCS. It  is natural  to expect that  discs of maximum radius in 

compact  hyperbolic surfaces of given genus g must occur in those surfaces which 

admit  as Dirichlet domain a regular N-gon with the largest possible number of 

sides N = 12g - 6. This result has been actually proved by M. Ns163163 ([13]) 

and C. Bayard ([2]). I t  turns out that  the radius Rg of such e x t r e m a l  d i s c s  is 

given by 
1 

cosh Rg - 
2 sin 12g--- 6 
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It follows that all surfaces of a given genus containing extremal discs, let us 

call them e x t r e m a l  surfaces ,  are obtained out of the regular N-gon via any 

coherent side-pairing identification. As a matter  of fact the number of the re- 

levant side pairings, for general g, has been studied by several authors. To our 

knowledge, it first appears in the article of Macbeath ([11]). It also occurs in 

the fundamental work of Harer and Zagier ([8]) and more recently this number 

has been studied by R. Baeher and A. Vdovina ([1]) in their study of one vertex 

triangulations of oriented surfaces. The explicit expression they obtain for the 

number of non-equivalent such side pairings grows very fast: it is 9 for g = 2, 

but it has 5, 7, 10 digits for genera 3, 4, 5 respectively. 

Elsewhere [6] we have shown that extremal surfaces possess a unique extremal 

disc if g > 3, but that may contain several if g -- 2, 3. 

In this article we describe in detail the extremal discs, the isometries and the 

Weierstrass points of the nine extremal surfaces of genus 2. 

1.2 THE FRICKE-KLEIN CONFIGURATIONS OF THE 18-GON. The extremal sur- 

faces of genus 2, or equivalently the admissible side-pairings of the 18-gon, were 

discovered by Fricke and Klein about a century ago (see also [9], [14]). Indeed in 

their book [5] they found all possible ways of identifying the sides of the 18-gon. 

We reproduce them in Figure 1 as they are found on page 267 of [5], except for 

their hyperbolic, instead of circular, shape. Identification of two sides is indicated 

by a line connecting them. 

On page 266 (second paragraph) of [5] the reader is warned that configurations 

obtained from the previous ones by mirror image are regarded as equivalent. Since 

in this paper isomorphism is going to mean orientation preserving isometry, we 

must consider these side pairings too. We shall show that by doing it we will 

add only one more to the list (in agreement with the number nine given in [1]). 

We shall denote this ninth side-pairing by P s ,  since it is obtained from Ps by 

reflection across the geodesic joining the middle points of sides 1 and 10 (see 

Figure 1). 

From now on we shall denote by Pi the polygon P endowed with the i-th side- 

pairing, and by Xi the surface Pi uniquely determines. By what has been said, 

Xi is an extremal surface with an extremal disc centered at the origin o. This 

disc has radius R2, R from now on, whose value is approximately R = 1.71911. 

On each of the polygons Pi (see Figure 1) we have marked points of two different 

sizes. The fat ones will account for the centers of the various extremal discs in 

the surface Xi whereas the thin ones will correspond to the Weierstrass points. 

The precise location of the centers denoted q is determined by its distance to the 
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origin d(o, q), which is approximately  0.777654 in Pa, 1.28738 in Ps, and 1.21231 

in t~ 
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Figure 1. Extremal surfaces of genus 2: centers of extremal discs 

( . ) ,  and Weierstrass points  (.). 

1.3 STATEMENT OF RESULTS. The way the problem is approached here, 

knowledge of  the group of  isometries is bo th  a tool  and a consequence of  our 
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understanding of the extremal discs. We recall that every compact surface of 

genus 2 admits a unique automorphism of order 2 fixing 6 points, the h y p e r -  

e l l ip t ic  involu t ion ,  which we shall denote by J.  

For instance, direct inspection shows that the rotation through angle 7r at o, 

R~, induces the hyperelliptic involution J on X2 (fixes o and the middle points 

of the five pairs of sides which are identified to their opposite ones), an involution 

a2 different from J on X1, X3 and Xs (fixes only 0 and p), and no automorphism 

on the remaining surfaces (R,  is not compatible with the side pairing). Similarly, 

R2~/3 induces an automorphism a3 only in )(6. 

THEOREM 1: 

(1) Up to isomorphism, the extremal surfaces in genus 2 are precisely 

xl,...,Xs,X~. 
(2) The list of  extremal discs and group of  automorphisms, Aut, of each of  

these surfaces is collected in the following table: 

Surface Number  of  discs Centers Aut Generators for Aut 

X 1 2 o,p Z2 • Z2 J, a2 

X2 1 o Z2 J 

X3 2 o, p Z2 • Z2 J, a2 

X4 2 o, q Z2 J 
X5 2 o, q Z2 J 

X6 4 o, u, v, w D6 v, Ja3 

X7 2 o, q Z2 J 

Xs  2 o, p Z2 • Z2 J, a2 

X s 2 o, p Z2 • Z~ J, a2 

where the notation for the centers is that employed in Figure 1 and r is a 

certain automorphism of  order 2 different from J 

(3) In each case the group of  automorphisms acts transitively on the set o f  

extremal discs. 

There are two key ideas in the proof of these results. 

(a) To discover hidden discs in a given surface, we first look for automorphisms. 

Then their action on the explicit extremal disc centered at o will uncover new 

extremal discs (except, of course, for the automorphisms fixing o). 

(b) To show that  the discs so found exhaust the list of extremal discs we use the 

fact (already employed by C. Bayard in [2]) that  being the center of an extremal 

disc imposes on a point z c D certain restrictions on the amount this point is 

displaced (d i sp l acemen t )  under the group K of isometrics of D generated by 

the side pairing transformations. 
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(For instance, d(z, 7(z)) must be _> 2R, since z and 7(z) serve as centers of 

two non-overlapping discs of radius R inside D; see Lemma 3 below.) 

Accordingly the paper is organized as follows. 

In section 2 we deal with point (a) and prove several statements about the 

automorphisms of these surfaces which will turn out to be very useful. 

In section 3 we address question (b) and so we collect several results in hyper- 

bolic trigonometry that will be used in the proof of our main theorem. The proof 

itself will be carried out in section 4. 

In section 5 we deal with the Weierstrass points (fixed points of the hyper- 

elliptic involution J)  of the extremal surfaces. Since J permutes extremal discs, 

hence their centers, and by now we shall have found all such, we will be at this 

point in a position to work out the explicit formula for J,  or rather a lift of it, 0 7. 

This, in turn, will allow us to detect the Weierstrass points, which are represented 

as the small points marked in Figure 1 (see Proposition 1). 

2. Preliminary results on automorphisms 

Let us denote by Ro the rotation through angle 0 at the center of the polygon. 

We shall prove the following result relative to the group of automorphisms, 

Aut(Xi),  of the surfaces under consideration. 

LEMMA 1: 

(i) The rotation through angle 7r, R~, induces an automorphism, a2, only for 

the surfaces X1, X2, X3, Xs  and X s .  This automorphism agrees with the 

hyperelliptic involution J only for X2. 

(ii) For 0 = 2zr/3, Ro induces an automorphism only for the surface X6. This 

automorphism a3 has order 3 and fixes the four points o, u, v, w. 

This surface admits an automorphism of order 2, T, different from J. The 

group generated by r and J acts transitively on the set {o, u, v, w}. 

(iii) No other rotation Ro, 0 ~ 7r, 27r/3, induces an automorphism of  any of the 

surfaces X1, . . . , Xs ,  X s .  

Proof: (i) Direct inspection shows that for surfaces X 1 , X 2 , X 3 ,  Xs ,  X s the 

rotation R~ is compatible with the side pairing, while for the remaining ones it is 

not (e.g., in/)7 the middle points of sides 5 and 13 are paired while their images 

under R~, the middle points of sides 14 and 4, are not). 

The automorphism induced by R~ on surfaces X1, X2, X3, Xs, X s agrees with 

the hyperelliptic involution when it fixes exactly six points, the Weierstrass 

points. A careful look at the figures shows that this only occurs in case of X2, 
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the set of Weierstrass points being o and the middle points of sides 1, 3, 4, 7 and 

8. 

(ii) Again by direct checking we see that for 0 = 2~r/3, Re induces an iso- 

morphism 0" 3 on surface X6. This isomorphism has four fixed points, namely 

O, it, V, W. 

Now from the classification of Riemann surfaces of genus 2 according to its 

automorphism group, going back to Bolza ([4], see also [15] and [10]), we see 

that  )(6 must be the Riemann surface of an algebraic equation of the form y2 __ 

(x 3 - 1)(x 3 - A6), for some A with )~6 ~t 1, and that a3 corresponds to the 

automorphism a3(x,y) = (~3x, y), where ~3 is a primitive 3-root of unity, the 

hyperelliptic involution being given by the expression J(x, y) = (x, - y ) .  

The four points of the algebraic curve fixed by 0"3, to match o,u,v ,w are 

(0, A3), (O, _~3) and the two points at infinity, O~1, O0 2 that  the Riemann surface 

of this curve has (see [12], 3.13). 

We now observe that this algebraic curve admits yet another automorphism of 

order 2 different from J,  namely v(x, y) = (A2/x,)~3y/x3). 

As for the last point, we recall that J permutes the two point sets {COl, oc2} 

and {(0, A3), (0, _A3)}, whereas T permutes these two sets. The proof is now 

complete. 

(iii) The last statement follows by direct inspection on Figure 1, since no 

rotation different from the ones related above is compatible with the side-pairing 

identifications. | 

LEMMA 2: 

(i) Let f: Xi ----+ Xj be an isomorphism between two of the nine surfaces in 

question, and suppose that f sends o E X~ to o E Xj.  Then, f is realized 

as a rotation of tile polygon. 

In particular, if the point o is a Weierstrass point, then the hyperelliptic 

involution J: X ~ X is given by the rotation R~. 

(ii) Except for the polygon P2, Pi represents an extremal surface possessing, at 

least, two different discs centered at o and J(o). 

Prod: (i) Let us denote by I(/, Kj  the groups generated by the side pairing 

transformations defining X~ and Xj respectively. A lift ] :  D ) D of f can be 

chosen so that  ](0) = 0, i.e., such that ] = Ro for some angle 0. We have to 

show that Ro preserves the polygon P, which means that 0 is an integer multiple 

of 27r/18. 
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This can be seen by observing that if p, p~ are the middle points of two sides 

which get paired under the action of Ki, their images Ro(p),Ro(p r) must get 

paired under the action of Kj.  Since both points lie inside the inscribed disc, 

this is only possible if Ro(p), Ro(p') are the middle points of certain sides of the 

polygon. 

(ii) By Lemma 1 (i) and the previous statement, the center of Pi for i r 2 is 

not a Weierstrass point. Hence J maps the extremal disc centered at o into a 

different one. | 

3. H y p e r b o l i c  t r i g o n o m e t r y  

In this section we use [3] as a general reference for hyperbolic trigonometry. 

LEMMA 3: Let {7(i,j)} be the set of side-pairings on the regular polygon P with 

18 sides defining an extremal Riemann surface of genus 2. Let L be the length 

of the sides of P, and H the distance from the center of P to any of the vertices. 

I f  z E P represents the center of an extremal disc embedded into the surface, 

then the displacement of z by every 7(~,j) verifies d(z, 7(~,j)(z)) >_ 2R. If  for some 

7(~o,jo) the inequality is strict, then d(z, 7(io,jo)(Z)) _> 2H + L. 

Proof: Let/50 be the Dirichlet domain centered at z for the Fuchsian group G 

generated by the transformations {7(i,j)}. Since z is the center of an extremal 

disc, T = {g(/5o)}gec yields a tessellation of D by regular hyperbolic polygons 

with 12g - 6 sides. The image of z under 7(i,j) is the center of some polygon/51 

of the tessellation T. 

It is clear that d(z, 7(~,j)(z)) attains its minimum 2R if and only if/50 and t51 

are adjacent. If this is not the case, then d(z, 7(i,j)(z)) equals at least 2H + L 

(see Figure 2). | 

In what follows, we will denote 

(1) d~ = 2H + L. 

It is not difficult to show that the numerical value of dl equals approximately 

4.74604. 

We will need some relations between these magnitudes. For instance, suitable 

application of the hyperbolic cosine rule to the triangles shown in Figure 2 give 

(2) cosh 2R = cosh ~ H - sinh 2 H cos(27r/3), 

(3) cosh 2R = eosh H cosh(H + L) - sinh H sinh(H + L) cos(n~3), 

(4) cosh 2R = cosh R cosh(dl/2).  
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dl 
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2R 

Figure 2. Some relevant distances. 

The next lemma is related to the convexity of the hyperbolic metric in D: 

LEMMA 4: Let R be a hyperbolic triangle with vertices at zl, z2, z3, and g a 

hyperbolic isometry. Then 

d(z, gz) < max{d(z,, gz 1), d(zu, gz2), d(z3, gz3) } 

for all z E R. 

Proo~ Denote the axis of g by 79, and its translation length by Tg. Then, by 

the well known formula sinh �89 gz) = coshd(z, 7g) sinh 1 ~Tg (see [3], page 174), 

it is enough to show d(z, ~9) ~- max{d(zl, 7g), d(z2, 7g), d(z3, 79)}- 

This inequality holds trivially if z = Zl. Now, for z in [z2, z3], we have 

d(z, < max{d(z2, Vg), d(z3, 

(this is because the set {z E D s.t. d(z, 79) ~ k} is convex in the hyperbolic 

metric, see [3], pages 163, 139). The result follows applying the same argument 

to any point in the segment [Zl, w], where w E [z2, z3]. | 

LEMMA 5: Let us label the sides of the regular polygon P with numbers from 1 

to 18. Let Pi be the middle point of side labeled i, zi the vertex between sides i 

and i + 1, and let 7(i,i+n) be the orientation preserving isometry o l d  sending side 
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labeled i to side labeled i + n (1 < n < 17), where notation should be understood 

modulo 18. Then 

(i) d(pi, 3%i+n)(Pi)) <_ 2R, and the inequality is strict unless n = 9. 

(ii) d(zi,"[(i,i+n)(Zi) ) < 2R if  n < 7 or n > 13, d(zi,')'(i,i+n)(Zi) ) = 2R if 
n = 7, 13, and d(zi,~/(~#+~)(zi)) > 2R in the other cases. 

(iii) d(pi+l,  7(i,i+n)(Pi+l)) < 2R i fn  < 6 or n > 15, d(pi+l, 7(i#+n)(Pi+l)) = 2R 

i f n  = 6, 15, and d(pi+l, ~/(i,i+~)(Pi+l) ) > 2R in the other cases. 

(iv) d(zi+l,~/(i,i+~)(zi+l)) < 2R if  n < 5, d(Zi+l,"/(i,i+n)(Zi+l)) = 2R if n = 

5, 17, and d(zi+l,'y(i,i+n)(Zi+l)) > 2R in the other  cases. 

(v) d(Zi_l,~/(i,i+n)(Zi_l) ) < 2R i fn  < 5 or n > 11, d(Zi-l,7(i#+n)(zi-1)) -- 2R 

i f n  = 5, 11, and d(zi-1, "y(i,i+~)(zi-1)) > 2R in the other cases. 

(vi) d(pi-1, ~/(i#+n)(Pi-1)) < 2R if n < 3 or n > 12, d(p~-l, ~/(i,i+n)(pi-1)) = 2R 

i f n  = 3, 12, and d(p~-l,  "~(i,i+n)(Pi-1)) > 2R in the other cases. 

(vii) d(zi-2, ?(i#+n)(Zi-2)) < 2R i fn  > 13 orn > 11, d(zi-2, "~(i#+n)(zi-2)) = 2R 

if n = 1, 13, and d(zi-2, ~(i,i+n)(zi-2)) > 2R in the other cases. 

In addition, the displacement of pi-1, Zi- l , pi, zi and Pi+ l under "[( i,i+n) is less 

than dl for all n, d(zi_2, ~/(i,i+n)(Zi-2)) <_ dl with strict inequality unless n = 7, 

and d(zi+l, 7(i#+~)(zi+~)) <_ dl with strict inequality unless n = 11. 

Proo~ We apply successively the hyperbolic cosine rule to the triangle with 

vertices at  o, x and 7(i,i+n)(x), where x is the relevant point  in each case (Pi for 

(i), zi for (ii), ere . . . .  ). We obtain: 

(i) Is just  a consequence of the tr iangular  inequality. 

(ii) cosh d(zi, 3'(i,i+n)(zi)) = eosh 2 H - s i n h  2 H e o s ( 2 ( n -  1)7r/18), so comparison 

with equat ion 2 gives the result. 

(iii) We have 

eosh d(pi+l, 7(i,i+n)(Pi+I )) = cosh R e o s h ( d l / 2 )  

- sinh Rsinh(dl /2)  cos((2n - 3)7r/18). 

The s ta tement  follows from equation (4). 

(iv) As in the previous eases we can compute  

cosh d(zi+l,  ~[(i,i+n)(Zi+l)) : eosh H cosh(H + L) 

- sinh H s inh(H + L) eos((2n - 4)7r/18). 

Comparison with equat ion (3) proves the result. 

The  proof  of (v), (vi), and (vii) follows clearly from (ii), (iii) and (iv) by 

applying a reflection on the polygon P ,  and the last s ta tement  follows trivially 

from the tr iangular  inequality (keeping in mind equation (1)). | 
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This lemma allows us to state the hyperbolic trigonometry computations in 

the form we will use them in the proof of the main theorem. 

Denoting by P ( X l , . . . ,  xk) the hyperbolic closed polygon whose vertices are 

x l , . . . ,  xk, we have proved the following facts (remember d(o, 7(i,j)(o)) -- 2R for 

every i, j ) :  

(F3) The displacement of each point in P(Pi-1, zi-1, zi, zi+l, o) under ~/(i,i+3) 

is less than 2R, except for Pi-1 and o, which are displaced exactly 2R. 

(F4) Every point in P(zi-1,  zi, zi+l, o) ".. {o} is displaced strictly less than 2R 

under 7(i,i+4). 

(F5) The displacement of o, zi-1, Z~+l under 7(i,i+5) equals 2R. All other points 

in P(zi-1,  zi, zi+l, o) are displaced less than 2R under 7(i,i+5). 

(F6) Every z E P(p~, zi,Pi+l, o) is displaced less than 2R under 7(i#+6), except 

o and Pi+l which are displaced 2R. 

(F7) zi and o are displaced 2R under 7(i,i+7) while any other point in P(Pi, zi, o) 
is displaced less than 2R. 

The next five facts follow from the previous ones by reflection: 

(F15) The displacement of each point in P(zi -2 ,  zi-1, zi,pi+l, o) by "Y(i,i+15) is 

less than 2R, except for Pi+l and o, which are displaced exactly 2R. 

(F14) Every point in P(zi-2, zi-1, z~, o) \ {o} is displaced strictly less than 2R 

under 7(i,i+14). 

(F13) The displacement of o, zi-2, zi under ~(~,i+13) equals 2R. All other points 

in P(zi-2,  zi-1, zi, o) are displaced less than 2R under ~/(i,~+13). 

(F12) Every z E P(Pi-1, z~-l,pi, o) is displaced less than 2R under ~(~,i+12), 

except o and Pi-1 which are displaced 2R. 

(F l l )  zi-1 and o are displaced 2R under 7(i,i+11) while any other point in 

P(z i - l ,Pi ,  o) is displaced less than 2R. 
We will need two more facts: 

(F9) For every z E P(zi-2, zi-1, zi, zi+l, o) we have d(z, 7(i,i+9)(z)) >_ 2R, with 

equality if and only if z lies in the segment [o, Pi]. 

(F*) For every z G P(zi-2,  zi-1, zi, Zi+l, o) we have d(z, 7(i,i+~)(z)) _< dl, with 

equality if and only if either n = 7, z = zi-2 or n = 11, z = zi+l. 

4. P r o o f  o f  T h e o r e m  1 

We now proceed to prove each of the three statements contained in Theorem 1, 

beginning with the second one: 

Part  (2) We examine one by one the nine surfaces. In our search for centers of 

extremal discs, suitable combination of Lemma 3 with the F properties developed 
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in the previous section will enable us to discard entire polygonal regions. We will 

use the term e x t r a  or h i d d e n  extremal disc to refer to an extremal disc different 

from the self-evident one, centered at o. 

As for the statement concerning the automorphism group of these surfaces, 

it will be in all cases a consequence of Lemma 1 and the transitivity of the 

automorphisms already found on the set of extremal discs. 

- For P1 it is sufficient to apply (F3) to 7(2,5), (F15) to 7(5,2), and note the 
symmetry on the identification pattern. This shows that the only z E P that 

could be the center of a hidden extremal disc is Pl (equivalently Pl0). Then, 

Lemma 2(ii) shows that X1 has exactly two discs centered at o and J(o) = p. 

- P2: Bavard ([2]) proved that X2 contains just one extremal disc. 

- Ps:  Apply (F3) to 7(2,5), (F15) to "Y(5,2), and note the symmetry on the 

side-pairing. This shows that  pl is the only point which could be the center of 

an extra extremal disc. Lemma 2(ii) yields again the result. 

- P4: Application of (F4) to 7(9,13) and 7(7,11), (F15) to 7(6,3), (F3) to 7(3,6), 
and (Fg) (with (F*) and Lemma 3) to 7(1,1o), followed by the symmetry on the 

side pairings across the geodesic joining Pl and plo, show that the only points 
that could be centers of extremal discs must lie in the geodesic segment [o, pl]. 

The displacement of each z E [o, pl] under 7(18,8) is less than dl by (F*). So, 

if a center different from o exists (and it has to exist by Lemma 2(ii)), it has to 

be displaced exactly 2R under 70s,s). 

Note that  only two points in [o, Pl] have this displacement: one of them is o; let 

us denote the other one by q. Using hyperbolic trigonometry in the quadrilateral 

P(o, q, 7(18,8)(o), 7Os,s)(q)), it is not difficult to show that d(o, q) ~_ 0.777654. 

- Ps:  Application of (F13) to 7(235) and "~(5,1s), (F4) to 7(.~,7), (F14) to ')'(7,3), 
(F6) to 7(s,14), and (Fg) (with (F*) and Lemma 3) to 7(lO,1), while keeping in 
mind the symmetry that the side-pairing possesses, shows that a hidden center 
(existing by Lemma 2(ii)) has to belong to the segment [o, plo] or to the triangle 

P(ps, zT, o). 
Now, note that by (F*), "~(9,16) displaces each point of P(Pg, Zs, z7, o) less than 

dl, with the exception of zT, which is displaced dl. But z7 cannot be the cemer 

of an extremal disc (apply "~(7,3)), so we have only to look at the set C of points 

being displaced 2R by "Y(9,16). It is known ([3], p. 163) that C is the union of two 

arcs of circumference C1, C2, one at each side of L, the axis of "~(9,16). 

We shall show that  L is the common perpendicular to the (complete) geodesics 

containing sides 9 and 16: this common perpendicular does exist, i.e., the two 

geodesics do not intersect (not even in the boundary of D), for if they did at 
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a point z, the Gauss Bonnet formula would imply that the area of the polygon 

P(z9, Zlo,..., z15, z) is negative. On the other hand, it is not difficult to check 

that  the common perpendicular is invariant under the transformation 7(9,16), so 

it is the axis. 

It is clear that L leaves the whole set P(P9, Zs, Z7,O) at the same side (in 

particular, it lies above L); otherwise the area of the 4-gon defined by L, [P9, P16] 

and the geodesics containing sides 9 and 16 would be negative. Therefore only one 

of the two arcs C1 and C2 passes through P(Ps, zs, z7, o). Indeed, by symmetry, 

L is orthogonal to the geodesic containing [z3, zl2]. This shows that  the set of 

points in P(Pg, zs, ZT, o) displaced 2R by 7(9,16) is an arc of circumference passing 

through 0 and tangent to the segment [Ps,PlT]. Therefore no point in P(Ps, zT, o) 

can be the center of a hidden extremal disc. 

So, we have only to check [o, plo]. Notice that  (F*) shows that any point 

in this segment is displaced less than dl under 7(9,16), and there are precisely 

two points being displaced exactly 2R, namely 0 and, say, q. In fact, it is 

not difficult to find d(o, q) using hyperbolic trigonometry in the quadrilateral 

P(o, q, 7(9,16)(0), 7(9,16)(q)) as in case of P4, resulting in approximately 1.28738. 

We finish noting that q has to be the center of an extremal disc by Lemma 

2(ii). 

- P~: Note that  the side-pairing has an order 3 symmetry. So, it is only needed 

to look at the subset of P6 defined by P(zl, z2 , . . . ,  ZT, o). 

Apply (F13) to 7(7,2) and 7(3,16), and (F5) to 7(4,9). We see that the only 

points that could be the center of an extremal disc are zl, z3, and Zs, which are 

the points marked u, v, w in P6- Part  (ii) of Lemma I shows that these are indeed 

centers of hidden extremal discs. 

- PT: Notice that the side pairing is, as in the two former cases, symmetric 

(with the line joining z5 and Z14 as symmetry axis). 

Applying (F15) to 7(4,~), (F14) to 7(1s,14), 7(15,11), (F13) to 7(17,12), (F3) to 

7(1,4), and the fact that  the side pairings are symmetric, we see that there are 

no centers of hidden extremal discs in P(p~, z6 , . . . ,  zls, zl . . . . .  z4,ps, o). So, we 

only need to check if there could be an extremal disc in P(Ps, z5,P6, o). 

To deal with the remaining, still symmetric, polygon P(ps, zs,p6, o), we 

proceed as follows: 

(1) We show that 7(4,1), and hence its symmetric side pairing ?'(7,1o), displaces 

the points Ps, z5,p6, o less than dl. This implies that the possible centers of 

extremal discs must lie on the intersection of the sets C and C consisting of 

points displaced exactly 2R under 7(4,1) and 7(7,10) respectively. 
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Recall ([3], p. 163) that C (resp. C') is the union of two arcs of circumference 

C1, C2 (resp. C~, C~) one at each side of L (resp. L'), the axis of 7(4,1) (resp. 

7(7,1o)). 
(2) The axis L (resp. L ~) is the common perpendicular to the geodesics 

containing sides 4 and 1 (resp. 7 and 10). 

(3) The polygon P(P5, z5,P6, o) lies entirely in one of the two components of 

D \ {L} (resp. D \ {L'}). Therefore only one of the two arcs, say Ca (resp. C~), 

meets P(P5, z5, P6, o). 
(4) The points p~, o, pls (resp. P6, o, p11) are displaced 2R by 7(4,1) (resp. 7(7,1o)) 

and lie in the same component of D \  {L} (resp. D \  {L'}). Thus, we may compute 

the circumferences C1, C~ and their intersection point q explicitly, resulting in the 

expression given in section 1. This point must be, therefore, the hidden extremal 

disc that exists by Lemma 2(ii). 

We now fill the gaps of each step. 

(1) By applying (F*) to 7(4,1) we see that  Ps, z5 are displaced less than dl. 

To draw the same conclusion for the remaining point P6, we first work on the 

triangle P(o, ~/(4,1)(Z5),7(4,1)(P6)) of which two lengths H + L, L/2 are known 

(see Figure 2), to determine the angle at the vertex o and the length of the third 

side, d(o, 7(4,1)(P6)). This, in turn, determines the angle at o of the triangle 

P(o, p6, 7(4,1)(P6)). This second triangle allows us to calculate d(p6, 7(4,1)(P6))- 

A computer calculation gives d(p6,7(4,1)(P6)) ~- 4.5447, which is less than the 

numerical value obtained for dl in section 3. 

(2) To show this point, argue exactly as we did in case of P5- 

(3) Let w4, wl be the points at which L intersects (perpendicularly) the 

geodesics containing sides 4 and 1. If L intersected P(P5, z5,P6, O), the area 

of the polygon P(w4, Wl, Zl, z2, z3) would equal 37r - ~r - 3(27r/3) = 0. 

(4) Applying (F15) to 7(4,1) we see that P5 is displaced 2R, and so must be 

Pls, since it is clear that both points are at the same distance of the translation 

axis L and in the same connected component of D \ {L}. 

- Ps:  Apply (F12) to 7(2,14), (F13) to 7(3,16), (F4) to 7(4,8), (F14) to 7(s,4), 

(F6) to 7(9,15), and (F9) to 7(10,1), and note the symmetry of the side-pairing 

under rotation through angle 7r fixing o. We see that  a center of an extremal disc 

different from o has to be either Pl or a point in P(z5, z6, o). 
Now we compute the displacement of P6 under 7(4,s). By the cosine law we 

have 

cosh d(p6, ~(4,s)(P6)) = cosh 2 - sinh 2 cos 1--8 

which, as computer calculation shows, is strictly less than cosh 2R. 
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So, no point in P(z5,p6, o) can be the center of an extra extremal disc, and 

the same argument applied to 7(8,4) discards also every point in P(P6, z6, o). 

As in the previous cases, Lemma 2(ii) guarantees that Pl has to be the center 

of an extremal disc, and is the only one apart from o. 

- P g :  Of course, our statements about X s follow from those about Xs by 

reflection. 

Part  (3). The fact that  the group of automorphisms acts transitively on the 

set of extremal discs follows immediately from the proof of (2). 

Part  (1). Since the eight surfaces Xi given in [9] and [5] fill the complete 

list of equivalence classes of extremal surfaces modulo isomorphism or anti- 

isomorphism, it is clear that when we consider equivalence classes of isomorphic 

extremal surfaces, the list is exhausted by X~, i = 1 , . . . ,  8 and all their mirror 

images. 

We next observe that two surfaces obtained in this process out of the same Xi 

must be isomorphic, since composition of two anti-automorphisms produces an 

automorphism. This reduces our problem to the study of just one mirror image 

of each surface Xi. 

Now by choosing in each Pi one's preferred diagonal to perform the mirror 

image, it is seen that in all cases but Ps we obtain an anti-automorphism of the 

surface Xi. Thus, the only possibly new surface added to the list in this way is 

the mirror image of Xs, which we had denoted X s .  

We next address the question of whether these nine surfaces are pairwise non- 

isomorphic. The information displayed in the table about number of discs and 

automorphism groups along with the numerical explicitness of the location of the 

centers, hence of the distance between them, allows us to conclude that there are 

no isomorphisms between our surfaces except, perhaps, for X1, X3, Xs, and X~-. 

Now, suppose we had an isomorphism f between two of these surfaces. Since 

f must preserve extremal discs, and these surfaces have only two of them, we can 

apply Lemma 2(i) to conclude that either f or J o ] can be realized as a rotation 

of the polygon; but we directly check that no rotation induces an isomorphism 

between them. | 

5. Weierstrass points 

In this section we describe geometrically and give explicit expressions for the 

hyperelliptic involution J (or rather a lift J of it) on each of the surfaces under 

consideration. This will allow us to locate representatives of the six Weierstrass 
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points inside P .  We characterize them as fixed points of g -1  o f f  for the six 

t ransformations g given in each case. 

We can state the following: 

PROPOSITION 1: The table below shows the explicit expression for a lift of the 

hyperelliptic involution for each of the surfaces Xi ,  and the Weierstrass points of 

these surfaces. Their location is approximately the one indicated in Figure 1. 

Surface J (z )  Weierstrass points: z E P s.t. J(z) = g(z) 

X1 z _ ?  ~ 
1 - r z  

Z 2 - z  

X3 

X4 

X5 

X6 

Xr  

Xs  

x~ 

z - ~  
1 - r z  

z - d  
1 - d z  

_ z + d  
l + d z  
z - - h i  
l + h i z  

~ t  

l + 2 d i z  

z - r  
1 - - r z  

Z--?" 
1 - - r z  

g : 7(14,11), 7(16,12), 7(6,9), 7(4,8), 

7(1,10) O 7(13,17), 7(1,10) O 7(7,3) 

g = Id, 7(1,10), 7(12,3), 7(13,4), 7(16,7), 7(17,8) 

g = Id, 7(4,17> 7(16,3), 7(10,1), 

7(10,1) 0 7(7,12), 7(10,1) 0 7(13,8) 

g ---- Id, 7(5,16), 7(s,ls), 7(lo,1), 7(12,2), 7(1~,4) 

g = Id, 7(6,12), 7(4,11), 7(1,10), 7(16,9), 7(14,8) 

g = Id, 7(2,r), 7(17,6), 7(12,5), 7(9,4), 

7(17,6) o 704,1) 

g = Id, 7(2,s), 7(16,6), 7(13,5), 7(9,3), 

7(16,6) O 7(14,1S) 

g = Id, 7(14,2> 7(6,1s), 7(10,1), 7(16,3), 

7(10,1) 0 7(7,12) 

g = Id, 7(6,1s), 7(14,2), 7(lO,1), 7(4,17), 

7(10,1) 0 7(13,8) 

r = tanh  ~ ,  h = tanh  H, and d = t anh  d(o ,q )  We have denoted 
2 

Proof: 

STEP 1: In order to unders tand J ,  we first note tha t  it permutes  pairs of centers 

of extremal discs, and so it preserves the geodesics th rough  them. 

For the case of Xi,  i -- 1,3, 8, let us denote by 7 the oriented closed geodesic 

represented on P~ by the (oriented) segment [Pl0,Pl]- It  is clear tha t  J leaves 7 

setwise invariant. I t  follows tha t  if we require a lift of J ,  J :  D ) D, to send 

Pl = r (r = t anh (R /2 ) )  to o, then we must  have 

z - - r  J(z)-- • 
1 - r z '  

depending on whether  J(o) = r = pl or J(o) = - r  -- pto. So, in order to fully 

determine J we only need to check whether J (7 )  = 7 or J (7 )  = 7 -1. 
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Here we invoke the result of [7], that  J(7)  = 7 if and only if 7 is a dividing 

curve. It is immediate to check that 7 is a dividing curve in case of X1, while it 

is not dividing in case of X3, Xs and X 8.  Hence for X1 we can choose a lift 

so that  J(o) = Pl0, yielding 
Z - - 7 "  

J(Z)  = l _ rz"  

On the other hand, 
Z - - r  

z ) -  1 -  r z  

is a lift of the hyperelliptic involution for X3 and 2(8. 

In case of X4, X5 and X7 there is no ambiguity, since a lift J sending q to 0 

must send 0 to q. 

For X6 we shall prove that J(o)  = w. Recall that P6 is symmetric with 

respect to the line [z5, z14]. Let us call S the anti-automorphism on X6 defined 

by this symmetry. Note that S ( v )  = u, while 0 and w remain fixed by S. 

The fact that J commutes with S (and indeed with any automorphism or anti- 

automorphism) shows that J fixes [zs, z14]. This confirms that  J (o )  = w,  and 

this again determines Y up to orientation. 

Now, denote by 7 the oriented closed geodesic given by the segment [0, zs] 

followed by side 11 and the segment [z14,0]. Since 7 is not a dividing curve, the 

mentioned result of [7] shows that  J(7)  = 7 -1- The lift 0 ~ is now completely 

determined: it sends back z5 to o. 

STEP 2: We shall find the Weierstrass points of each surface. Note that  z E P 

is a fixed point of J if there exists an element g in the group G generated by the 

side pairing transformations such that  J(z)  = g(z ) .  Thus, in order to determine 

the Weierstrass points of, say, X1 we proceed as follows: 

We can write explicitly the transformations ~/(j,k); it is not difficult to show 

that 
7(1,10)(z) = (1 + r2 ) z  - 2r 

and any other 7(j,k) is related to 7(1,1o) by means of the relation 

"[(j,k ) = --R2(k-1)Tr /18 0 7(1,10) o R _ 2 ( j _  l )rr /1 s.  

Now we look for solutions in P of the equation J ( z )  = g (z ) ,  first when g runs 

among the set of side pairing transformations and then among the set of composi- 

tions of pairs of them. In this way, we find such solutions for g = 7(14A1), 7(16,12), 

"/(6,9), ~/(4,S), 7(1,10) O 7(13,17) and 7(1.10) o "f(7,3). This gives the six Weierstrass 

points. 
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These computa t ions  (for each surface) may  be done explicitly. For instance, 

the Weierstrass point  in X1 obta ined  as the solution of J ( z )  = 7(16,12)(z) turns  

out to be  
- b  - v ~  - 4ac 

Z ~ 

2a 

where, if we denote by ~ the first 18-root of unity, a, b and c are given by 

a = 2r~ 3 + r(1 + r 2 ) ~  -4 ,  

b = - 2 r 2 ( ~  -7  + ~3) _ (1 + r2)(1 + ~-4) ,  

c = 2r~ -7  + r(1 + r2). 

This  way we are able to locate t hem as shown in Figure 1. | 
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