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ABSTRACT

It is known that the largest disc that a compact hyperbolic surface of
genus g may contain has radius R = cosh~1(1/2sin(n/(12g — 6))). It is
also known that the number of such (extremal) surfaces, although finite,
grows exponentially with g. Elsewhere the authors have shown that for
genus g > 3 extremal surfaces contain only one extremal disc.

Here we describe in full detail the situation in genus 2. Following
results that go back to Fricke and Klein we first show that there are
exactly nine different extremal surfaces. Then we proceed to locate the
various extremal discs that each of these surfaces possesses as well as
their set of Weierstrass points and group of isometries.

1. Introduction and statement of results

1.1 EXTREMAL DISCS. It is natural to expect that discs of maximum radius in
compact hyperbolic surfaces of given genus g must occur in those surfaces which
admit as Dirichlet domain a regular N-gon with the largest possible number of
sides N = 12g — 6. This result has been actually proved by M. Naiténen ([13])
and C. Bavard ([2]). It turns out that the radius Ry of such extremal discs is
given by
1
2sin 1575 '

cosh Ry =
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It follows that all surfaces of a given genus containing extremal discs, let us
call them extremal surfaces, are obtained out of the regular N-gon via any
coherent side-pairing identification. As a matter of fact the number of the re-
levant side pairings, for general g, has been studied by several authors. To our
knowledge, it first appears in the article of Macbeath ([11]). It also occurs in
the fundamental work of Harer and Zagier ([8]) and more recently this number
has been studied by R. Bacher and A. Vdovina ([1]) in their study of one vertex
triangulations of oriented surfaces. The explicit expression they obtain for the
number of non-equivalent such side pairings grows very fast: it is 9 for g = 2,
but it has 5, 7, 10 digits for genera 3, 4, 5 respectively.

Elsewhere [6] we have shown that extremal surfaces possess a unique extremal
disc if g > 3, but that may contain several if g = 2, 3.

In this article we describe in detail the extremal discs, the isometries and the
Weierstrass points of the nine extremal surfaces of genus 2.

1.2 THE FRICKE-KLEIN CONFIGURATIONS OF THE 18-GON. The extremal sur-
faces of genus 2, or equivalently the admissible side-pairings of the 18-gon, were
discovered by Fricke and Klein about a century ago (see also [9], [14]). Indeed in
their book [5] they found all possible ways of identifying the sides of the 18-gon.
We reproduce them in Figure 1 as they are found on page 267 of [5], except for
their hyperbolic, instead of circular, shape. Identification of two sides is indicated
by a line connecting them.

On page 266 (second paragraph) of [5] the reader is warned that configurations
obtained from the previous ones by mirror image are regarded as equivalent. Since
in this paper isomorphism is going to mean orientation preserving isometry, we
must consider these side pairings too. We shall show that by doing it we will
add only one more to the list (in agreement with the number nine given in [1}).
We shall denote this ninth side-pairing by P; , since it is obtained from Fs by
reflection across the geodesic joining the middle points of sides 1 and 10 (see
Figure 1).

From now on we shall denote by P; the polygon P endowed with the ¢-th side-
pairing, and by X; the surface P; uniquely determines. By what has been said,
X; is an extremal surface with an extremal disc centered at the origin o. This
disc has radius Ry, R from now on, whose value is approximately R = 1.71911.

On each of the polygons P; (see Figure 1) we have marked points of two different
sizes. The fat ones will account for the centers of the various extremal discs in
the surface X; whereas the thin ones will correspond to the Weierstrass points.
The precise location of the centers denoted ¢ is determined by its distance to the
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origin d{o, q), which is approximately 0.777654 in Py, 1.28738 in P5, and 1.21231
in P7.

Figure 1. Extremal surfaces of genus 2: centers of extremal discs
(8), and Weierstrass points ().

1.3 STATEMENT OF RESULTS. The way the problem is approached here,
knowledge of the group of isometries is both a tool and a consequence of our
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understanding of the extremal discs. We recall that every compact surface of
genus 2 admits a unique automorphism of order 2 fixing 6 points, the hyper-
elliptic involution, which we shall denote by J.

For instance, direct inspection shows that the rotation through angle 7 at o,
R., induces the hyperelliptic involution J on X; (fixes o and the middle points
of the five pairs of sides which are identified to their opposite ones), an involution
o9 different from J on X7, X3 and X3 (fixes only o and p), and no automorphism
on the remaining surfaces (R, is not compatible with the side pairing). Similarly,
Rjr /3 induces an automorphism o3 only in Xe.

THEOREM 1:
(1) Up to isomorphism, the extremal surfaces in genus 2 are precisely
X1,..., X8, X5 .

(2) The list of extremal discs and group of automorphisms, Aut, of each of
these surfaces is collected in the following table:

Surface | Number of discs | Centers Aut Generators for Aut
X1 2 0,p Z2 X Zigy J, [0}
X2 1 ] Z2 J
X3 2 o,p Z2 X Lo J, g9
Xy 2 0,q Zs J
X5 2 0,q Zs J
X6 4 0, U, U, W Dg T,Jos
Xq 2 0,q Zs J
Xg 2 o,p Zo X Lo J, o0
Xg 2 o,p Zs X Zg J, o2

where the notation for the centers is that employed in Figure 1 and 7 is a
certain automorphism of order 2 different from J

(3) In each case the group of automorphisms acts transitively on the set of
extremal discs.

There are two key ideas in the proof of these results.

(a) To discover hidden discs in a given surface, we first look for automorphisms.
Then their action on the explicit extremal disc centered at o will uncover new
extremal discs (except, of course, for the automorphisms fixing o).

(b) To show that the discs so found exhaust the list of extremal discs we use the
fact (already employed by C. Bavard in [2]) that being the center of an extremal
disc imposes on a point z € D certain restrictions on the amount this point is
displaced (displacement) under the group K of isometries of D generated by
the side pairing transformations.



Vol. 132, 2002 GENUS TWO EXTREMAL SURFACES 225

(For instance, d(z,v(z)) must be > 2R, since z and ~y(z) serve as centers of
two non-overlapping discs of radius R inside D; see Lemma 3 below.)

Accordingly the paper is organized as follows.

In section 2 we deal with point (a) and prove several statements about the
automorphisms of these surfaces which will turn out to be very useful.

In section 3 we address question (b) and so we collect several results in hyper-
bolic trigonometry that will be used in the proof of our main theorem. The proof
itself will be carried out in section 4.

In section 5 we deal with the Weierstrass points (fixed points of the hyper-
elliptic involution J) of the extremal surfaces. Since J permutes extremal discs,
hence their centers, and by now we shall have found all such, we will be at this
point in a position to work out the explicit formula for J, or rather a lift of it, J.
This, in turn, will allow us to detect the Weierstrass points, which are represented
as the small points marked in Figure 1 (see Proposition 1).

2. Preliminary results on automorphisms

Let us denote by Ry the rotation through angle 6 at the center of the polygon.
We shall prove the following result relative to the group of automorphisms,
Aut(X;), of the surfaces under consideration.

LEMMA 1:

(i) The rotation through angle n, R,, induces an automorphism, o, only for
the surfaces X1, X9, X3, Xg and Xg . This automorphism agrees with the
hyperelliptic involution J only for X,.

(if) For 6 = 27 /3, Ry induces an automorphism only for the surface Xg. This
automorphism o3 has order 3 and fixes the four points o, u, v, w.

This surface admits an automorphism of order 2, r, different from J. The

group generated by T and J acts transitively on the set {o,u,v,w}.
(iii) No other rotation Ry, 8 # =, 2w /3, induces an automorphism of any of the
surfaces X1,...,Xg, Xg .

Proof: (i) Direct inspection shows that for surfaces X, Xs, X3, X5, Xg the
rotation R, is compatible with the side pairing, while for the remaining ones it is
not {e.g., in Pr the middle points of sides 5 and 13 are paired while their images
under R, the middle points of sides 14 and 4, are not).

The automorphism induced by R, on surfaces X, X, X3, X5, Xz agrees with
the hyperelliptic involution when it fixes exactly six points, the Weierstrass
points. A careful look at the figures shows that this only occurs in case of X,
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the set of Weierstrass points being o and the middle points of sides 1,3,4,7 and
8.

(ii) Again by direct checking we see that for 8 = 27/3, Ry induces an iso-
morphism o3 on surface Xg. This isomorphism has four fixed points, namely
0, U, U, W.

Now from the classification of Riemann surfaces of genus 2 according to its
automorphism group, going back to Bolza ([4], see also [15] and [10]), we see
that X must be the Riemann surface of an algebraic equation of the form y? =
(3 — 1)(x® — X5), for some X with A® # 1, and that o3 corresponds to the
automorphism o3(z,y) = (£3z,y), where &3 is a primitive 3-root of unity, the
hyperelliptic involution being given by the expression J(z,y) = (z, —y).

The four points of the algebraic curve fixed by o3, to match o,u,v,w are
(0, A3), (0, —A3) and the two points at infinity, co;, 0o that the Riemann surface
of this curve has (see [12], 3.13).

‘We now observe that this algebraic curve admits yet another automorphism of
order 2 different from J, namely 7(x,y) = (A\%/z, A3y/z?).

As for the last point, we recall that J permutes the two point sets {001,002}
and {(0,A%), (0, -)®%)}, whereas 7 permutes these two sets. The proof is now
complete.

(iii) The last statement follows by direct inspection on Figure 1, since no
rotation different from the ones related above is compatible with the side-pairing
identifications. |

LEMMA 2:

(i) Let f: X; — X; be an isomorphism between two of the nine surfaces in
question, and suppose that f sends o € X; to o € X;. Then, f is realized
as a rotation of the polygon.

In particular, if the point o is a Weierstrass point, then the hyperelliptic

involution J: X — X is given by the rotation R,.

(ii) Except for the polygon P», P; represents an extremal surface possessing, at

least, two different discs centered at o and J(0).

Proof: (i) Let us denote by K;, K; the groups generated by the side pairing
transformations defining X; and X respectively. A lift f:D — D of f can be
chosen so that f (0) = 0, i.e., such that f = Ry for some angle §. We have to
show that Ry preserves the polygon P, which means that 6 is an integer multiple
of 27 /18.
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This can be seen by observing that if p,p’ are the middle points of two sides
which get paired under the action of K;, their images Ry(p), Re(p') must get
paired under the action of K;. Since both points lie inside the inscribed disc,
this is only possible if Ry(p), Ro(p’) are the middle points of certain sides of the
polygon.

(ii) By Lemma 1 (i) and the previous statement, the center of P; for ¢ # 2 is
not a Weierstrass point. Hence J maps the extremal disc centered at o into a
different one. |

3. Hyperbolic trigonometry
In this section we use [3] as a general reference for hyperbolic trigonometry.

LeEMMA 3: Let {7 j)} be the set of side-pairings on the regular polygon P with
18 sides defining an extremal Riemann surface of genus 2. Let L be the length
of the sides of P, and H the distance from the center of P to any of the vertices.

If z € P represents the center of an extremal disc embedded into the surface,
then the displacement of z by every v; ;) verifies d(z,7; j)(2)) > 2R. If for some
Yio,jo) the Inequality is strict, then d(z, V(i 0)(2)) > 2H + L.

Proof: Let P, be the Dirichlet domain centered at z for the Fuchsian group G
generated by the transformations {7(i,j)}' Since z is the center of an extremal
disc, T = {g(]so)}geg vields a tessellation of D by regular hyperbolic polygons
with 12g — 6 sides. The image of z under 7(; ;) is the center of some polygon P
of the tessellation T

It is clear that d(z,v(; j)(z)) attains its minimum 2R if and only if Py and P
are adjacent. If this is not the case, then d(z,v(; ;) (2)) equals at least 2H + L
(see Figure 2). ]

In what follows, we will denote
1) dy=2H + L.

It is not difficult to show that the numerical value of d; equals approximately
4.74604.

We will need some relations between these magnitudes. For instance, suitable
application of the hyperbolic cosine rule to the triangles shown in Figure 2 give
(2) cosh 2R = cosh® H — sinh® H cos(27/3),

(3) cosh 2R = cosh H cosh(H + L) — sinh H sinh(H + L) cos(w/3).
(4) cosh 2R = cosh R cosh(dy/2).



228 E. GIRONDO AND G. GONZALEZ-DIEZ Isr. J. Math.

Figure 2. Some relevant distances.
The next lemma, is related to the convexity of the hyperbolic metric in D:

LEMMA 4: Let R be a hyperbolic triangle with vertices at zy,z2,73, and g a
hyperbolic isometry. Then

d(z,92) < max{d(z1, gz1),d(22, g22), d(23,g23)}

for all z € R.

Proof: Denote the axis of g by <4, and its translation length by Ty;. Then, by
the well known formula sinh d(z, gz) = coshd(z,v,) sinh $T; (see [3], page 174),
it is enough to show d(z,7v,) < max{d(z1,7¢), d(22,74), d(23,7g) }-

This inequality holds trivially if z = z;. Now, for z in [29, 23], we have

d(z,7,) < max{d(z2,7g),d(23,74)}

(this is because the set {z € D s.t. d(z,74) < k} is convex in the hyperbolic
metric, see [3], pages 163, 139). The result follows applying the same argument
to any point in the segment [z1,w], where w € [29, 23]. ]

LEMMA 5: Let us label the sides of the regular polygon P with numbers from 1
to 18. Let p; be the middle point of side labeled i, z; the vertex between sides i
and i+1, and let v(; ;+n) be the orientation preserving isometry of D sending side
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labeled i to side labeled i+n (1 < n < 17), where notation should be understood
modulo 18. Then
(1) d(pi, V(i i4n)(Ps)) < 2R, and the inequality is strict unless n = 9.
(i) d(2i, Yi,iem) (7)) < 2R ifn < 7 or n > 13, d(%;,Vi,i4n)(21)) = 2R if
n = 7,13, and d(z;,Y(;,i+n)(2:)) > 2R in the other cases.
(iii) d(pi+1, VG i4n)@i+1)) < 2R ifn < 6 or n > 15, d(pit1, V(i,i4n) (Pi+1)) = 2R
ifn = 6,15, and d(p; 41, V(i,i+n)(Pi+1)) > 2R in the other cases.
(IV) d(zi_,,l,'y(i,”n)(ziﬂ)) < 2R ifn < 5, d(zi+1,7(i,i+n)(zi+1)) =2R ifn =
5,17, and d(2i41,V(i,i+n)(2i+1)) > 2R in the other cases.
(V) d(zi—l”)'(i,i+n)(zi—l)) <2Rifn<born> 11, d(z.i_l,'y(i,.i+n)(zi_1)) =2R
ifn =5,11, and d(z;_1, Yi,i+n)(2i—1)) > 2R in the other cases.
(vi) d(Pi—1,V(,i4n)(Pi-1)) < 2R ifn < 3 orn > 12, d(pi—1, V(i i4+n)(Pi-1)) = 2R
ifn =3,12, and d(p;_1, ¥(i,i4+n)(Pi-1)) > 2R in the other cases.
(vii) d(2i-2,Yq,i4n)(2zi—2)) < 2Rifn > 13 orn > 11, d(2i_2, ¥ i4n) (zi—2)) = 2R
ifn =1,13, and d(zi_2, Y(i,i+n)(2i-2)) > 2R in the other cases.
In addition, the displacement of p;_1, 2; 1, p;, 2 and p;y1 under 7(; ;yn) is less
than dy for all n, d(z;_2, Y(;,i4n)(2i—2)) < d1 with strict inequality unless n =7,
and d(zi41,7(,i+n)(2i+1)) < di with strict inequality unless n = 11.

Proof: We apply successively the hyperbolic cosine rule to the triangle with
vertices at o, # and 7(; ;.4n)(z), where z is the relevant point in each case (p; for
(i), 2 for (ii), etc. ...). We obtain:

(i) Is just a consequence of the triangular inequality.

(ii) cosh d(z;, ¥(i,i4n) (2)) = cosh? H —sinh? H cos(2(n—1)7/18), so comparison
with equation 2 gives the result.

(iil) We have

cosh d(pit1, Y(i,i4n)(Pi+1)) = cosh R cosh(d;/2)
— sinh Rsinh(d,/2) cos((2n — 3)7/18).
The statement follows from equation (4).
(iv) As in the previous cases we can compute
cosh d(zi41,V(s,i+n)(2i+1)) =cosh H cosh(H + L)
— sinh H sinh(H + L) cos((2n — 4)7/18).
Comparison with equation (3) proves the result.
The proof of (v), (vi), and (vii) follows clearly from (ii), (iii) and (iv) by

applying a reflection on the polygon P, and the last statement follows trivially
from the triangular inequality (keeping in mind equation (1)). ]
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This lemma allows us to state the hyperbolic trigonometry computations in
the form we will use them in the proof of the main theorem.

Denoting by P(xy,...,zx) the hyperbolic closed polygon whose vertices are
T1,...,Tk, we have proved the following facts (remember d(o, v(; j)(0)) = 2R for
every 4,7):

(F3) The displacement of each point in P(p;_1, 2i—1, 2i, 2i+1,0) under v ;43
is less than 2R, except for p;—; and o, which are displaced exactly 2R.

(F4) Every point in P(z;_1, 2;,2i+1,0) ~ {0} is displaced strictly less than 2R
under ¥; ;44)-

(F5) The displacement of 0, z;_1, 241 under 7; ;45) equals 2R. All other points
in P(z;-1, %i, 2i+1,0) are displaced less than 2R under v(; ;45).

(F6) Every z € P(p;, 2;, pi+1, 0) is displaced less than 2R under v, ;4), except
o and p;y; which are displaced 2R.

(F7) z; and o are displaced 2R under +y(; ;17) while any other point in P(p;, 2, 0)
is displaced less than 2R.

The next five facts follow from the previous ones by reflection:

(F15) The displacement of each point in P(z;_3, i1, 2i, Pi+1,0) by V(s,i415) is
less than 2R, except for p;1+ and o, which are displaced exactly 2R.

(F14) Every point in P(z;—9, 2;-1, 2;,0) ~ {0} is displaced strictly less than 2R
under y(;,i+14)-

(F13) The displacement of o, z;_2, z; under ; ;413) equals 2R. All other points
in P(z;_2, zi—1, %, 0) are displaced less than 2R under v(; j113)-

(F12) Every z € P(pi—1,2i—1,Ds,0) is displaced less than 2R under ¥(; ;112),
except o and p;_; which are displaced 2R.

(F11) 2z, and o are displaced 2R under 7(; ;411) while any other point in
P(z;_1,p;,0) is displaced less than 2R.

We will need two more facts:

(F9) For every z € P(zi—2, 2i—1, %, Zi+1,0) We have d(2, y(; i+9)(2)) > 2R, with
equality if and only if z lies in the segment [0, p;].

(F*) For every z € P(2i_2, 2i—1, Zi, 2i+1,0) We have d(z,7Y(;,i+n)(2)) < di, with
equality if and only if eithern =7, 2 = z,_s or n = 11, 2 = 2;41.

4. Proof of Theorem 1

We now proceed to prove each of the three statements contained in Theorem 1,
beginning with the second one:

Part (2) We examine one by one the nine surfaces. In our search for centers of
extremal discs, suitable combination of Lemma 3 with the F properties developed
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in the previous section will enable us to discard entire polygonal regions. We will
use the term extra or hidden extremal disc to refer to an extremal disc different
from the self-evident one, centered at o.

As for the statement concerning the automorphism group of these surfaces,
it will be in all cases a consequence of Lemma 1 and the transitivity of the
automorphisms already found on the set of extremal discs.

- For Py it is sufficient to apply (F3) to y(2,5), (F15) to 7Y(s,2), and note the
symmetry on the identification pattern. This shows that the only z € P that
could be the center of a hidden extremal disc is p; (equivalently pip). Then,
Lemma 2(ii) shows that X has exactly two discs centered at o and J(0) = p.

- P2: Bavard ([2}) proved that X, contains just one extremal disc.

- P3: Apply (F3) to y25), (F15) to 7(5,2), and note the symmetry on the
side-pairing. This shows that p; is the only point which could be the center of
an extra extremal disc. Lemma 2(ii) yields again the result.

- P4: Application of (F4) to 9,13y and 7y(7,11), (F15) to v6,3), (F3) to ¥3,6),
and (F9) (with (F*) and Lemma 3) to 71,10, followed by the symmetry on the
side pairings across the geodesic joining p; and pjg, show that the only points
that could be centers of extremal discs must lie in the geodesic segment [0, p1].

The displacement of each z € {0, p1] under y(15 5 is less than dy by (F*). So,
if a center different from o exists (and it has to exist by Lemma 2(ii)}), it has to
be displaced exactly 2R under (13 g).

Note that only two points in [0, p;] have this displacement: one of them is o; let
us denote the other one by ¢. Using hyperbolic trigonometry in the quadrilateral
P(0,q,718,8)(0), 7(18,8)(¢)), it is not difficult to show that d(o,q) ~ 0.777654.

- P5: Application of (F13) to y(2,15) and (5,18, (F4) to v 7). (F14) to 7(7,3),
(F6) to v(s,14), and (F9) (with (F*) and Lemma 3) to (10,1), while keeping in
mind the symmetry that the side-pairing possesses, shows that a hidden center
(existing by Lemma 2(ii)) has to belong to the segment [0, p1g) or to the triangle
P(ps, 27,0).

Now, note that by (F*), v(9,16) displaces each point of P(pg, zg, 27, 0) less than
dy, with the exception of z7, which is displaced d;. But z7 cannot be the center
of an extremal disc (apply 7(7,3)), so we have only to look at the set C' of points
being displaced 2R by v(9,16). It is known ([3], p. 163) that C' is the union of two
arcs of circumference C1, Cy, one at each side of L, the axis of Y(9,16)-

We shall show that L is the common perpendicular to the (complete) geodesics
containing sides 9 and 16: this common perpendicular does exist, i.e., the two
geodesics do not intersect (not even in the boundary of D), for if they did at
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a point z, the Gauss—Bonnet formula would imply that the area of the polygon
P(zg, 210, - - ., 715, 2) 18 negative. On the other hand, it is not difficult to check
that the common perpendicular is invariant under the transformation (g 16), 0
it is the axis.

It is clear that L leaves the whole set P(pg, 2s,27,0) at the same side (in
particular, it lies above L); otherwise the area of the 4-gon defined by L, [pg, p1¢]
and the geodesics containing sides 9 and 16 would be negative. Therefore only one
of the two arcs C; and Cs passes through P(ps, zs, 27,0). Indeed, by symmetry,
L is orthogonal to the geodesic containing [z3, z;2]. This shows that the set of
points in P(po, 28, 27, 0) displaced 2R by (9,16) is an arc of circumference passing
through o and tangent to the segment [pg, p17]. Therefore no point in P(ps, 27, 0)
can be the center of a hidden extremal disc.

So, we have only to check [o,p10]. Notice that (F*) shows that any point
in this segment is displaced less than d; under (g 16), and there are precisely
two points being displaced exactly 2R, namely o and, say, ¢. In fact, it is
not difficult to find d(o,q) using hyperbolic trigonometry in the quadrilateral
P(0,4,7(9,16)(0): 7(9,16)(¢)) as in case of Py, resulting in approximately 1.28738.

We finish noting that ¢ has to be the center of an extremal disc by Lemma
2(ii).

- Pg: Note that the side-pairing has an order 3 symmetry. So, it is only needed
to look at the subset of Py defined by P(zy, 22, ..., 27,0).

Apply (F13) to 7(7,2) and 7(3,16), and (F5) to 7(4,9)- We see that the only
points that could be the center of an extremal disc are zq, 23, and z5, which are
the points marked u, v, w in Pg. Part (ii) of Lemma 1 shows that these are indeed
centers of hidden extremal discs.

- P7: Notice that the side pairing is, as in the two former cases, symmetric
(with the line joining z5 and 214 as symmetry axis).

Applying (F15) to 4,1y, (F14) to v(1s,14) Y5,11) (F13) t0 717,12, (F3) to
Y(1,4), and the fact that the side pairings are symmetric, we see that there are
no centers of hidden extremal discs in P(pg, 26, . .. 218, 21+ - -, 24, D5, 0). S0, We
only need to check if there could be an extremal disc in P(ps, 25, s, 0).

To deal with the remaining, still symmetric, polygon P(ps, z5,ps,0), we
proceed as follows:

(1) We show that 74,1y, and hence its symmetric side pairing v(7,10), displaces
the points ps, z5,pe,0 less than d;. This implies that the possible centers of
extremal discs must lie on the intersection of the sets C' and C’ consisting of
points displaced exactly 2R under (4 1) and 7z 10) respectively.
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Recall ([3], p. 163) that C (resp. C”) is the union of two arcs of circumference
C1,Cy (resp. C1,C3) one at each side of L (resp. L'), the axis of 74,1 (resp.
7(7,10))-

(2) The axis L (resp. L') is the common perpendicular to the geodesics
containing sides 4 and 1 (resp. 7 and 10).

(3) The polygon P(ps, z5,ps,0) lies entirely in one of the two components of
D~ {L} (resp. D~ {L'}). Therefore only one of the two arcs, say C; (resp. C7),
meets P(ps, 25, pe, 0).

(4) The points ps, 0, p1g (resp. pe, 0, p11) are displaced 2R by v(4,1) (resp. ¥(7,10))
and lie in the same component of DN\ {L} (resp. D~{L'}). Thus, we may compute
the circumferences C, C] and their intersection point ¢ explicitly, resulting in the
expression given in section 1. This point must be, therefore, the hidden extremal
disc that exists by Lemma 2(ii).

We now fill the gaps of each step.

(1) By applying (F*) to v4,1) We see that ps, z5 are displaced less than d;.
To draw the same conclusion for the remaining point pg, we first work on the
triangle P(0,7(4,1)(25), Y(4,1)(Ps)) of which two lengths H + L, L/2 are known
(see Figure 2), to determine the angle at the vertex o and the length of the third
side, d(0,7(4,1)(ps)). This, in turn, determines the angle at o of the triangle
P(0,pe,Y(4,1)(ps)). This second triangle allows us to calculate d(ps, v(4,1)(Ps))-
A computer calculation gives d(pg,Y(s,1)(Ps)) =~ 4.5447, which is less than the
numerical value obtained for d; in section 3.

(2) To show this point, argue exactly as we did in case of P;.

(3) Let wy,w; be the points at which L intersects (perpendicularly) the
geodesics containing sides 4 and 1. If L intersected P(ps,25,Dpe,0), the area
of the polygon P(wy,w, 21, 22, 23) would equal 37 — m — 3(27/3) = 0.

(4) Applying (F15) to y(4,1) we see that ps is displaced 2R, and so must be
Pis, since it is clear that both points are at the same distance of the translation
axis L and in the same connected component of D ~\ {L}.

- Pg: Apply (F12) to y2,14), (F13) to v(3,16), (F4) to v(a,8), (F14) to (s 4),
(F6) to (9,15, and (F9) to 7(10,1), and note the symmetry of the side-pairing
under rotation through angle 7 fixing 0. We see that a center of an extremal disc
different from o has to be either p; or a point in P(zs, z¢, 0).

Now we compute the displacement of ps under 7(4,5). By the cosine law we
have

cosh d(ps, Y(4,8)(ps)) = cosh? h_ sinh? 4 cos ir
2 2 18
which, as computer calculation shows, is strictly less than cosh 2R.
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So, no point in P(z5,pg, 0) can be the center of an extra extremal disc, and
the same argument applied to 7 4) discards also every point in P(ps, 26,0).

As in the previous cases, Lemma 2(ii) guarantees that p; has to be the center
of an extremal disc, and is the only one apart from o.

- Pg: Of course, our statements about X follow from those about Xz by
reflection.

Part (3). The fact that the group of automorphisms acts transitively on the
set of extremal discs follows immediately from the proof of (2).

Part (1). Since the eight surfaces X; given in [9] and [5] fill the complete
list of equivalence classes of extremal surfaces modulo isomorphism or anti-
isomorphism, it is clear that when we consider equivalence classes of isomorphic
extremal surfaces, the list is exhausted by X;, ¢ = 1,...,8 and all their mirror
images.

We next observe that two surfaces obtained in this process out of the same X;
must be isomorphic, since composition of two anti-automorphisms produces an
automorphism. This reduces our problem to the study of just one mirror image
of each surface Xj;.

Now by choosing in each P; one’s preferred diagonal to perform the mirror
image, it is seen that in all cases but Pg we obtain an anti-automorphism of the
surface X;. Thus, the only possibly new surface added to the list in this way is
the mirror image of Xg, which we had denoted Xg .

We next address the question of whether these nine surfaces are pairwise non-
isomorphic. The information displayed in the table about number of discs and
automorphism groups along with the numerical explicitness of the location of the
centers, hence of the distance between them, allows us to conclude that there are
no isomorphisms between our surfaces except, perhaps, for X1, X3, X5, and Xg .

Now, suppose we had an isomorphism f between two of these surfaces. Since
f must preserve extremal discs, and these surfaces have only two of them, we can
apply Lemma 2(i) to conclude that either f or Jo f can be realized as a rotation
of the polygon; but we directly check that no rotation induces an isomorphism
between them. |

5. Weierstrass points

In this section we describe geometrically and give explicit expressions for the
hyperelliptic involution J (or rather a lift J of it) on each of the surfaces under
consideration. This will allow us to locate representatives of the six Weierstrass
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points inside P. We characterize them as fixed points of g=! o J for the six
transformations g given in each case.
We can state the following:

PROPOSITION 1: The table below shows the explicit expression for a lift of the
hyperelliptic involution for each of the surfaces X;, and the Weierstrass points of
these surfaces. Their location is approximately the one indicated in Figure 1.

Surface | J(z) Weierstrass points: z € P s.t. J(z) = g(z)
X1 f__fz 9 = 7(14,11)s 7(16,12)> V(6,9)5 V(4,8)>
7Y(1,10) © Y(13,17)> Y(1,10) © ¥(7,3)
Xo -z g = Id, v(1,10), Y(12,3)> Y(13,4)> V(16,7)> V(17,8)
X3 -== g = 1d, v4,17)5 Y(16,3)s Y(10,1)
7Y(10,1) © Y(7,12)> Y(10,1) © Y(13,8)
Xy - f:;z g=1d, Y(5,16)5 7(8,18)s Y(10,1)5 Y(12,2)1 Y(15,4)
X5 —% g = Id, ¥(6,12)> V(4,11)> V(1,10)> V(16,9)> V(14,8)
Xe —12_{_;;?;; g =1d, 72,7, Y17,6)> 7(12,5)» Y(9,4)
i Y17,6) © Y14,1)
X7 —ﬁ}—ﬁﬁ; 9 = Id, v2,8): Y(16,6)» 7(13,5)+ V(9,3)s
Y(16,6) © Y(14,18)
X3 - 9 = Id, v(14,2), V(6,18 Y(10,1)> 7(16,3)»
Y(10,1) © Y(7,12)
Xg - g = Id, v(6,18)» V(14,2)> V(10,1)> V(4,17)>
Y(10,1) © Y(13,8)

We have denoted r = tanh %, h = tanh 521—, and d = tanh @.

Proof:

STEP 1: In order to understand .J, we first note that it permutes pairs of centers
of extremal discs, and so it preserves the geodesics through them.

For the case of X;, ¢ = 1,3, 8, let us denote by « the oriented closed geodesic
represented on P; by the (oriented) segment [p1g,p1]. It is clear that J leaves v
setwise invariant. It follows that if we require a lift of J, J:D — D, to send
p1 = r (r = tanh(R/2)) to o, then we must have

~ z—r

J(z)==% ,

1—-rz

depending on whether J(0) = r = p; or J(0) = —r = p1o. So, in order to fully
determine J we only need to check whether J(vy) =y or J(y) =41
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Here we invoke the result of {7], that J(y) = v if and only if v is a dividing
curve. It is immediate to check that v is a dividing curve in case of X, while it
is not dividing in case of X3, Xg and Xg . Hence for X; we can choose a lift J

so that J(o) = po, yielding

~ z—r
J(z) = .
(2) 1-rz
On the other hand,
~ z—r
J(z) =—
) 1-rz

is a lift of the hyperelliptic involution for X3 and Xs.

In case of X4, X5 and X7 there is no ambiguity, since a lift J sending ¢ to o
must send o to g.

For X¢ we shall prove that J(o) = w. Recall that Ps is symmetric with
respect to the line [25,z14]. Let us call S the anti-automorphism on X¢ defined
by this symmetry. Note that S(v) = u, while 0 and w remain fixed by S.
The fact that J commutes with S (and indeed with any automorphism or anti-
automorphism) shows that J fixes [z5, 214]. This confirms that J(o) = w, and
this again determines J up to orientation.

Now, denote by <y the oriented closed geodesic given by the segment [0, 25]
followed by side 11 and the segment [214,0]. Since v is not a dividing curve, the
mentioned result of [7] shows that J(7) = vy~ .
determined: it sends back z5 to o.

The lift J is now completely

STEP 2: We shall find the Weierstrass points of each surface. Note that z € P
is a fixed point of J if there exists an element g in the group G generated by the
side pairing transformations such that J(z) = g(z). Thus, in order to determine
the Weierstrass points of, say, X; we proceed as follows:

We can write explicitly the transformations 7(; x); it is not difficult to show

that a 2) .
+réjz —2r
Ya,10y(2) = 057 a2

and any other +y(;,x) is related to 7 19y by means of the relation

Y.k = —Rak—1yr/18 © ¥(1,10) © R_2(j—1) /18-

Now we look for solutions in P of the equation J(z) = g(2), first when g runs
among the set of side pairing transformations and then among the set of composi-
tions of pairs of them. In this way, we find such solutions for g = y(14,11), Y(16,12)s
Y6,9)> 7(4,8)> V(1,10) © Y13,17) and Y(110) © ¥(7,3)- This gives the six Welerstrass
points.
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These computations (for each surface) may be done explicitly. For instance,
the Weierstrass point in X; obtained as the solution of J(2) = v(16,12)(2) turns

out to be
_ —b — Vb2 — dac
o 2a ’

where, if we denote by & the first 18-root of unity, a, b and ¢ are given by

a =2 +r(1 472,
b=-2r2(¢7T+€) ~ (1+r)(1+ €77,
c=2rE T+ (1 +72).

This way we are able to locate them as shown in Figure 1. [
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